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NOTE 

The Calculation of Cubic Harmonics’ 

1 It is often necessary to use linear combinations 

/ yi) = f: az~~mYzm(e~) (1.1) 
m=-z 

of spherical harmonics Y%B(&$) which transform according to an irreducible 
representation y of a finite subgroup of R3 (e.g., the cubic group) [l] in molecular 
and solid-state calculations. 

The classical methods for obtaining the coefficients az@m are clumsy and 
inconvenient [2], [3], particularly for large I values. Recent work by Mueller and 
others [4], [5] has made it desirable to calculate these coefficients for 1 values up 
to at least 100 in the case of the cubic group. 

In this paper we discuss a group theoretical extension of the familiar recursion 
formula for associated Legendre Polynomials [6J to cubic harmonics. 

2. Although the recursion relation [6] for the P,” is usually obtained by the 
methods of classical analysis, it is simply an expression of the reduction of the 
Kronecker product of two irreducible representations of the rotation group 

&-l x 91 = 91 + a-1 + %-2 , 

or in terms of basis functions 

IAm)= 1 II--19 m’> I 1, m”>(f - 1, m’; 1, mn 1 lm>, (2.1) 
m’m” 

and this relation may be used to calculate Yzm(8$) from Yz-lm’(h$) and Y1m”(@). 
An analogous device may be used to calculate polynomials of degree n in 

(x, y, z) from polynomials of degree n - 1 in (x, y, z) and (x, y, z) for irreducible 
representations of the cubic group 

1 q/i) = a?” / n - 1; y’i’> I 1, y”i”)<y’i’; Y”i” I ri> (2.2) 

1 Work performed under the auspices of the U.S. Atomic Energy Commission. 
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since (x, y, z) span the representation I’, of the cubic group, and the cubic Wigner 
coefficients (y’i’; y”i” 1 yi) are tabulated [7]. Although (2.2) can be used to generate 
sets of homogeneous polynomials of degree n in (x, y, z) which span the space of 
all homogeneous polynomials of degree IE in (x, y, z) and transform according to 
irreducible representations of the cubic group, they are not all spherical harmonics 
of order n (e.g., (x2 + y2 + z~)~ is homogeneous of degree 4 but is r4 PO). 

However, to select out the spherical harmonics of order n, it is necessary only to 
apply the projection operator 

I(n) = i 1 nm)(nm I. 
rn---n 

(2.3) 

3. Let ] npai) be the ith vector of the pth occurrence of the representation 
P, and let ] nm) be the mth vector of the representation Dn of the full rotation 
group so that 

I npai) = f I nm>(nm I npcxi) (3.1) 

we require the coefficients (nm I npai). 
For the Fermi-surface determination of Mueller [4], [5] we need only even n 

values. The coefficients (2m 1 2yk) are tabulated by Koster et al. [7]. 
We will show how to obtain the coefficients (nm 1 npoli) from the coefficients 

<n - 2, mf I n - 2,&i) 

( n - 2q/3j) = C 1 n - 2m’)(n - 2m’ I n - 2q/?j), (3.2) 
m’ 

I M) = c I 2yk) I n - W!iXyk /Ii I pai), (3.3) 
j.k 

But 

so that 

= C I2m”)) n - 2 m’)(2m” I 2yk)(n - 2m’ I q/3j)(yk; /3j I ai). 
(3.4) ?n’m”jk 

I2m”) I n - 2m’) = C 
NM 

1 NM)(NM I 2m”; n - 2m’) (3.5) 

/ pd) = c I NM)(2m” I WXn - 2m’ I qSD<yk Pj j ai). (3.6) 
NMm”m’jk 

Terms with the same N in (3.6) transform among themselves under the cubic 
group since the I NM), M = -N to N afford a representation of the full rotation 
group. Therefore, the terms with N = n in (3.6) are I npai); i.e., 

(nm ( npoli) = c <2m” I 2yk)(n - 2m’ I q/?j)(yk; /S’j I oli)(nm I 2m”; n - 2m’). 
rn”?n’jk (3.7) 
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Equation (3.7) is deceptively simple. There are two pitfalls to beware of. One 
is the labeling by the variable p. It does not appear in the Wigner coefficients 
(/3j yk 1 czi), and yet it springs from nowhere on the left-hand side (3.6) and (3.7). 
If there is only one occurrence of r” in Ys x r”, then p is simply a label that 
reflects the fact that a given representation may be accessible in more than one 
way and may occur more than once. When the task of programming is commenced 
and all the representations that belong with a given n and 01 are written as a sequen- 
tial data set, p merely becomes the sequence number of the representation in that 
data set. 

A related problem is that not all the representations obtained by use of (3.7) 
are necessarily linearly independent. Thus when a new representation 1 pai) 
i= 1 **a na has been obtained, it must be checked for linear independence from 
all those already in the data set before p is incremented by one and it is added to 
the set. 

4. A prototype program has been written in PL/l and run on an IBM O/S 360 
Model 50, making extensive use of 2311 disk and stream I/O for intermediate 
storage. It took about 27 minutes to reach n = 24. 

The program is now being rewritten to run under ASP on a 360 75150 configura- 
tion, using record IjO and extensive I/O overlap with CPU processing. It is expected 
that this program will reach M = 100 before rounding errors become significant 
or CPU time becomes embarrassingly long. 

When this new program is running and debugged, we will be willing to distribute 
tapes carrying the coefficients (nm 1 npai) to interested parties. Inquiries should 
be addressed to the author of this paper. 
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